SPECTRAL ANALYSIS OF THE FRIEDMAN-KELLER
EQUATIONS OF HOMOGENEOUS TURBULENCE

(SPEKTRAL’ NYI ANALIZ URAVNENII FRIDMANA-KELLERA
DLIA ODNORODNOI TURBULENTNOSTI)

PMM Vol.26, No.6, 1962, pp. 1099-1103

M.M. PRUDNIKOV

{Moscow)

(Received July 17, 1862)

A problem of Cauchy type is considered for the Friedman-Keller equations
in the case of homogeneous turbulence. The spectral tensors, which are
the generalized Fourier transforms of the correlation tensors, are re-
presented at an arbitrary instant of time in the form of the sum of a
series of multiple integrals of the spectral tensors of the initial dis-
tribution function.

Let “ak(Mh) be the turbulent velocity at the point Mk; then we denote

the velocity correlation tensor by
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the spectral velocity tensor by
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and the pressure-velocity correlation tensor by
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Here summation is carried out over repeated indices.

In the statistical theory of turbulence the correlation tensors de-
termining the distribution-function satisfy the well-known Friedman-
Keller system of equations, derived from the Navier-Stokes equations {l}.

For the case of homogeneous turbulence in an incompressiboe fluid
they have the form
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We introduce homogeneous coordinates
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and the dimensionless variables uy, the mean square velocity, and i,, 13,
v, ln, characteristic scales for the correlation moments of order 2,
3, ..., n

Then eliminating the pressure by means of the relation
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we put the system (1.1) (1.n) into the characteristic feorm for the theory
of homogeneous turbulence:
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The Reynolds numbers Rn in equations (2.1) (2.n) are different, and
according to the physical meaning of correlation, form a decreasing
sequence,

The formulation of the spectral analog of the infinite system of
Priedman-Keller equations is associated with the difficulty that the
Fourier transforms in the classical sense do not exist for the correla-
tion tensors of higher than third order. For example, for r;, T, ~ @ and
(ry - r,) and ry finite, the fourth-order moment tends to

Hm T8, (1, 1) = T8 (1, — 1) T, P (25) £ 0

¥e therefore introduce the general ized Fourier transform {2 Appendix}
of the function

Ol @l= 5 |/ @ dz =g (k) &

In the final expressions for solutions having physical significance
there will appear only integrals of multiplicity n — 1 over the wave
space of the generalized spectral temsors of rank n, which will be
regular functions; the intermediate calculations reduce simply to inte-
gral operations; therefore the introduction of these generalized func-
tions is correct.

We show that the Fourier transform
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The property (4) is easily obtained from the inverse Fourier trans-
formation.

With the transformation of coordinates
P =1 T, (mEi) py=—ry,{m=1)

we reduce (5) to (4). Here the wave numbers K, conjugate to the P trans-
form as

wy=k(i%m), %=kli=m

According to a well-known formula of the theory of the Fourier inte-
gral we have
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The Fourier transform of the Poisson kernel is
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Taking into account the properties (4) and (5) of spectral tensors,

we give the spectral formulation of the Friedman-Keller equations for
homogeneous turbulence:
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The spectral tensors are smooth functions of time, since infinite
forces do not exist in a turbulent stream. Regarding (7.1), (7.2), ...,
(7.n) as ordinary linear equations with coanstant coefficients and right-
hand sides depending upon time, we solve each of the equations of the
system:
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The expressions (9.1), (9.2), (9.n) determine the spectral temsors of
the distribution function of a turbulent velocity field at the instant
of time ¢t > 0 in terms of the spectral tensors of the initial distribu-
tion function. The solution obtained is interesting in that it permits
carrying out an investigation of turbulence for initial conditions be-
longing to different types of symmetry.

Appendix. Let the turbulent velocity field possess the distribution
function

Ity My My [, (M), U (M), oo ytq (M )]
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Then the logarithm of the characteristic distribution function
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with coefficients, the so-called semi-invariants [3]
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The semi-invariants are expressed in terms of the correlation temsors
13}:
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For & normal Gaussian distribution the semi~invariants of bigher than
third order vanish.

Since according to experimental results the actual distribution is
close to Gaussian [1], the semi-invariants of higher than third order
are small functions.

According to {3} the correlation tensors can be represented as

{n) — {n) n g
Tao, [ TN, S Sa.,, a1, sy Oy + Tau. [ "PRNATY Y W) for n>3
where T, (:ig a_, are the correlation tensors of the Gaussian dis-
s s Cp
tribution.

We note that for r,~®, T~ T8 and therefore S — 0, and the classical
Fourier transformation is applicable, Then the Fourier transform of the
correlation tensors of rank higher than third is the sum of two Fourier
transforms: The classical ®(S), and the generalized Fourier transform of
the Gaussian distribution ®(T8). The latter is very easily introduced
using 8(k), the Dirac delta function, with the use of the following pro-
perties of the Fourier transform
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The spectral function of fourth rank is expressed as
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The spectral teusor of arbitrary rank can be introduced using the re-
currence relation {3]:
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The examination carried out justifies the application of the method,
and permits an explicit expression to be obtained for the initial
spectral temsors of a given Gaussian distribution.

We note that such & choice of initial conditions imposes no essentisl
limitation on the generality of the problem investigated, because in the
solution obtained:

a) the spectral tensors of third order are different from zero for
t > 0;

b) the solution takes dissipation into account, which acts chiefly on
the small-scale turbulence and leads to departures from the
Gaussian distribution in the course of time,
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