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A problem of Cauchy type is considered for the Friedman-Keller equations 

in the case of homogeneous turbulence. The spectral tensors, which are 

the generalized Fourier transforms of the correlation tensors, are re- 

presented at an arbitrary instant of time in the form of the sum of a 

series of multiple integrals of the spectral tensors of the initial dis- 

tribution function. 

Let u 
“k 

(Mk) be the turbulent velocity at the point lk; then we denote 

the velocity correlation tensor by 

?’ (4 a,n ,,“‘, n,_.l (MO, fill, * . . * M,+) = e,, (MO) %, (-Jfd? . ’ %,_1 (Mn-,)i 

the spectral velocity tensor by 

and the pressure-velocity correlation tensor by 

Here summation is carried out over repeated indices. 

In the statistical theory of turbulence the correlation tensors de- 

termining the distribution-function satisfy the well-known Friedman- 

Keller system of equations, derived from the Navier-Stokes equations [II. 

For the case of homogeneous turbulence in an incompressiboe fluid 

they have the form 

1666 
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. . . . . . . ..*........................ 

{~-~~+~?.,a,+~= 
k==O 

iire introduce homogeneous coordinates 

a 
-=- axa@ 

and the dimensionless variables uo, the mean square velocity, and I,, IS, 

1 ..*, B’ characteristic scales for the correlation moments of order 2, 
3. . ..( Il. 

Then eliminating the pressure by means of the relation 

we put the system (1.1) f1.n) into the characteristic form for the theory 
of homogeneous turbulence: 
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(2.1) 

(23; 
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The Reynolds numbers A, in equations (2. I) (2.n) are different, and 
according to the physical meaning of correlation, form a decreasing 
sequence. 

The formulation of the spectral analog of the infinite system of 
Friedman-Keller equations is associated with the difficulty that the 
Fourier transforms in the classical sense do not exist for the correla- 
tion tensors of higher than third order. For example, for rI, r2 - @ and 

(rl - r2) and r3 finite, the fourth-order moment tends to 

lim *$iaP, (rt, n, 4 = *$! (rl - rz) T$ (r9) f 0 

le therefore introduce the generalized Fourier transform E2. Appendix] 
of the function 

(3) 

In the final expressions for solutions having physical significance 
there will appear only integrals of multiplicity R - 1 over the wave 
space of the generalized spectral tensors of rank n, which will be 
regular functions; the intermediate calculations reduce simply to inte- 
gral operations; therefore the introduction of these generalized func- 
tions is correct. 

Ke show that the Fourier transform 

@ $imM T,(“+l$ = 
n+ 0 O’“” s 

vd,“t,l& (kl, . . . , k,) dk, 

QM(liz *,, 
...’ n-P m 

(*+$ = T$+;A, kl, . . . , x,, . . . , kn) dk, 

x,,,=-(kl+...+k,J 

(4) 

(5) 

The property (4) is easily obtained from the inverse Fourier traus- 
format ion. 

With the transformation of coordinates 

pi = q --mW#% pi=-rm(rn=i) 

we reduce (5) to (4). Here the uave numbers ~~ conjugate to the pi trans- 
form as 

zi = k, (i # m), xi = I: k, (i = m) 

According to a well-known formula of the theory of the Fourier inte- 
gral we have 
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The Fourier transform of the Poisson kernel is 

Taking into account the propertles (4) and (5) of spectral tensors, 

we give the spectral formulation of the Friedman-Keller equations for 

homogeneous turbulence: 

The spectral tensors 8re smooth functions of time, since infinite 

forces do not exist in a turbulent stre8m. Regarding (7. lf, (7.2). . . . , 

(7.111 as ordinary linear equations with constant coefficients and right- 
hand sides depending upon time, we solve each of the equations of the 

system: 
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t 

ra;l) (kl, 0 = T=+,, (2) (kl, 0) EpZt + ,-Pd s epze2 X2 (ds)) de2 (8.1) 

0 
t 

T$$, (h kz, t)= taoala 1 
c3) (kI, k2, 0) ePSt + ,-pSt 

s 
epaeaXg (vt4)) d& 03.3 

0 

(n) 
% ,._.,a,l(kl, . . 9 k-1, t, = 

=Z (N ~,...,a,_1 (k,, . . . , kn-1, O)zPn' -l-zpnt t ePnenXn(dn+l))d$, 
s 
0 

(8.n) 

X*(d3)), . . . , Xn(dn+l) ) are the right-hand sides of the equations 
(7). Or setting 

t 

e 
--P,t 

\ 
ewn x n (,@+l)) de,, = L, (@+I)) , * w a,,...,a,_l (h . . . , k,, 0) = ‘5’4 

. 

and eliminating T (f~+l) from vain) 
I - -. , an-1 

, we obtain 

r$ (kr, 2)~ v,$: (kl, O)e-P" +L((rf'e-":)+... GJ.1) 

. . . + 4L,, . . . , L-l (pcrPme_l) + . . . 

r$a”k lb, ka, t) = rwla, 1 (3) (kl, kz, 0) e -pJ + L,q (t(;‘e-p40y + . . . (9.2) 

. . . +U4, . . . ,.&._1~~, e w -P~~M)+*** 

. . . . . . . . . . . . . . . . . . ..-............ 

r (N 
a,,...,,+,_1 he + . . I h-l3 t, = %.(?.,a,+, (kl, . . . , k,l, O)e-pnt + (9.11: 

+ L,(rb"+')e-p~+lon) + . . . + LnLn+l, . . . , Lm_l (rI;“) evPmem-l) + . . . 

The expressions (9. l), (9.2), (9.n) determine the spectral tensors of 
the distribution function of a turbulent velocity field at the instant 
of time t > 0 in terms of the spectral tensors of the initial distribu- 
tion function. The solution obtained is interesting in that it Permits 
carrying out an investigation of turbulence for initial conditions be- 
longing to different types of symmetry. 

Appendix. Let the turbulent velocity field possess the distribution 
function 
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Then the logarithm of the characteristic distribution function 

admits an expansion in Taylor series iaith respect to % ue’ % al’ ** 
with coefficients, the so-called semi-invariants [31 

1671 

%* n-l 

Tbe semi-invariants are expressed in terms of the correfation tensors 

133 : 

For a normal Gaussian dfstribution t-lie semi-invariants of higher than 
third order vauish. 

Since according to experimental results the actual distribution is 
close to Gaussian [I], the semi-invariants of higher than third order 
are small functions. 

According to [33 the correlation tensors can be represented as 

Ta,l::, . . I. iJa 

s fn) 
_I= aO,a,....,a,_l + Ta,%.g. I (I, i.&__l 

where T (n)g 
aoSal,-..run_I are the correlation tensors of 

tribution. 

for n>3 

the Gaussian dis- 

%e note that for rk 4 03, T -L Tg and therefore S - 0, aud the classical 
Fourier transformation is applicable. Then the Fourier transform of the 
correlation tensors of rank higher than third is the sum of two Fourier 
transforms: The classical Q(S), and the generalized Fourier trltnsform of 
the Gaussian distribution @(Tgj. The latter is very easily introduced 
using 6(k), the Dirac delta function, with the us8 of the following pro- 
perties of the Fourier transform 
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& 1 f (0 - r%) exP I- i (km + k?rs)f dridr* = q! (kl) d (kl + kS) 

s h (?I) f~ (rl - r2) exp [-- i (hrl+ km)1 hdr~ = ~1 (kl + k2) q8 (k2) 

1 
-zi-” s exp (- ikr) dr = 6 (k~, kb(k)=O 

The spectral function of fourth rank is expressed as 

+ 

+ 

+ 4) 

The spectral tensor of arbitrary rank can be introduced using the re- 
currence relation f31 : 

T (n) 8 
aa*. . .* Qn-_1 = Tao(:T2) g , a _-s To t2) * I,.. n n--2%-1 

f 

The examination carried out justifies the application of the method, 
and wwrlts an explicit expression to be obtained for the Initial 
spectral tensors of a given Qaussian distribution, 

Be note that such a choice of initial conditions imposes no essential 
limitation on the generality of the problem investigated, because in the 
solution obtained: 

a) the spectral tensors of third order are different from zero for 

t > 0; 

b) the solution takes dissipation into account, which acts chiefly on 
the small-scale turbulence and leads to departures from the 
Qausslan distribution in the course of time. 
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